首页> 外文OA文献 >A Bayesian spatio-temporal model to estimate long term exposure to outdoor air pollution at coarser administrative geographies in England and Wales: a Bayesian model to estimate long term exposure to outdoor air pollution
【2h】

A Bayesian spatio-temporal model to estimate long term exposure to outdoor air pollution at coarser administrative geographies in England and Wales: a Bayesian model to estimate long term exposure to outdoor air pollution

机译:贝叶斯时空模型,用于估算英格兰和威尔士较为粗略的行政区域的长期暴露于室外空气污染:贝叶斯模型,用于估算长期暴露于室外空气污染

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Estimation of long term exposure to air pollution levels over a large spatial domain, such as the mainland UK, entails a challenging modelling task since exposure data are often only observed by a network of sparse monitoring sites with variable amounts of missing data. This article develops and compares several flexible non-stationary hierarchical Bayesian models for the four most harmful air pollutants: NO$_2$, O$_3$, PM$_{10}$ and PM$_{2.5}$, in England and Wales during the five year period 2007--2011. The models make use of observed data from the UK's Automatic Urban and Rural Network (AURN) as well as output of an atmospheric air quality dispersion model developed recently especially for the UK. Land use information, incorporated as a predictor in the model, further enhances the accuracy of the model. Using daily data for all four pollutants over the five year period we obtain empirically verified maps which are the most accurate among the competition. Monte Carlo integration methods for spatial aggregation are developed and these allow us to obtain predictions, and their uncertainties, at the level of a given administrative geography. These estimates for local authority areas can readily be used for many purposes such as modelling of aggregated health outcome data and are made publicly available alongside this paper.
机译:在一个较大的空间范围(例如英国大陆)中,长期暴露于空气污染水平的估算需要一项艰巨的建模任务,因为暴露数据通常只能通过稀疏的监测站点网络来观察,而这些站点的丢失数据量却不定。本文针对英国和美国的四种最有害的空气污染物,开发并比较了几种灵活的非平稳分层贝叶斯模型:NO $ _2 $,O $ _3 $,PM $ _ {10} $和PM $ _ {2.5} $。威尔士2007--2011年的五年期间。这些模型利用了来自英国自动城乡网络(AURN)的观测数据,以及最近特别为英国开发的大气质量扩散模型的输出。土地使用信息作为模型的预测指标,可以进一步提高模型的准确性。使用五年期内所有四种污染物的每日数据,我们获得了经过实证验证的地图,该地图在竞争中最为准确。开发了用于空间聚集的蒙特卡洛积分方法,这些方法使我们能够在给定的行政地理范围内获得预测及其不确定性。这些对地方当局区域的估计可以很容易地用于许多目的,例如对汇总的健康结果数据进行建模,并与本文一起公开提供。

著录项

  • 作者

    Sahu, Sujit;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号